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Introduction
I had help from Urs Schreiber during my phd thesis on understanding the ingre-
dients of the construction of the Mayer-Vietories sequence given below. What is
written in section 1 is known in the HoTT-community, with the possible exception
of Section 1.4 and Lemma 1.5. In 2013 Michael Shulman wrote a blog post with
the ideas this article builds upon. Floris van Doorn actually proved those ideas to
work and mechanized them in his phd thesis. They speak of parametrized spectra,
which is more general than what we need here.

1 Cohomology of sheaves on types

1.1 HoTT prerequisites

The symbol ≡ is used for definitional equality, the symbol = for equality of objects.
A pointed type is a pair (X, ∗). We suppress the pair when denoting pointed types
and just write X and assume that the point is called ∗. We will denote the fiber
of map f : A→ B to a pointed type B by

f−1(∗) :≡
∑
x:A

(f(x) = ∗)

For a pointed type X, we use the abbreviation

ΩX :≡ (∗ =X ∗)

and call ΩX the loop space of X. The type ‖ΩX‖0 is a group. For a map f : A→
B and x, y : A, there is an induced map

f : (x =A y)→ (f(x) =B f(y))

A pointed map is a map f : A→ B between pointed types A,B together with an
equality f(∗) =B ∗. In this case we have an induced map on loop spaces:

Ωf : ΩA→ ΩB

We will frequently use Univalent Foundations Program 2013, Lemma 8.4.4, which
states:
Proposition 1.1
For any map f : A→ B of pointed types, we have the fibration sequence

· · · → Ω2B → Ωf−1(∗)→ ΩA→ ΩB → f−1(∗)→ A→ B

where the map from ΩA→ ΩB is (Ωf)−1, i.e. Ωf composed with the map

x = y → y = x.
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Proposition 1.2
(a) For any group G there is a pointed type BG such that ΩBG = G.

(b) If G is abelian and then for any n : N there is a pointed type BnG such that
ΩnBnG = G. BnG is also called K(G, n).

(c) The construction extends to maps, i.e. for any group homomorphism f :
G→ H there is a pointed map Bf : BG→ BH, such that ΩBf = f .

(d) If f : A → B is a homomorphism of abelian groups, then Bnf can be
constructed.

(i) and (ii) are constructed in Licata and Finster 2014, Section 5. (i) is constructed
as a higher inductive type and (iii) can be established by the recursion/induction
principles of higher inductive types. (iv) is analogous to (ii).
By Proposition 1.1 we can construct a delooping of the kernel of a group homor-
phism:

Proposition 1.3
Let f : G→ H be a homomorphism of groups. Then f−1(∗) = Ω(Bf)−1(∗).

This is a direct application of Proposition 1.1.
The following will be useful to keep in mind:
Let f, g :

∏
x:X Yx be dependent functions. Univalence implies function extension-

ality, i.e. the map

(f = g)→

(∏
x:X

(f(x) = g(x))

)
pointwise induced by evaluation is an equivalence. If (x : X) 7→ Ax is pointwise
pointed,

∏
x:X Ax is pointed by the map (x : X) 7→ ∗ and(

Ω
∏
x:X

Ax

)
=

(∏
x:X

ΩAx

)
We will also need the following generalization:

Proposition 1.4
Assume for any x : X there is a pullback square

Px Ax

Bx Cx

Then ∏
x:X Px

∏
x:X Ax

∏
x:X Bx

∏
x:X Cx

is a pullback square.
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1.2 Sheaves

We will use the fact, that sheaves can be represented as maps from their étalé
spaces. By univalence, this implies, that a sheaf F on a type X can be represented
as a dependent type

(x : X) 7→ Fx
We will assume throughout that our sheaves are abelian, which means that each
Fx is an abelian group. This entails that we can deloop pointwise using Proposi-
tion 1.2, i.e. if (x : X) 7→ Fx is an abelian sheaf, then for every n : N there is a
sheaf

(x : X) 7→ BnFx
For a map f : Y → X and a sheaf F on X we have a sheaf

f ∗F :≡
(
(x : Y ) 7→ Ff(x)

)
We call a map

ϕ ≡ (x : X) 7→ ϕx :
∏
x:X

(Fx → Gx)

of abelian sheaves F and G a homomorphism, if all ϕx are group homomorphisms.

1.3 Cohomology

This section essentially repeats parts of (van Doorn 2018, Section 5.4) for a special
case. In (van Doorn 2018, Section 5) there are results about spectral sequences,
which we will not mention here. The cohomology of a sheaf F on X is defined by

Hn(X,F) :≡

∥∥∥∥∥∏
x:X

BnFx

∥∥∥∥∥
0

Then Hn(X,F) is an abelian group since

Hn(X,F) =

∥∥∥∥∥∏
x:X

Ω2Bn+2Fx

∥∥∥∥∥
0

=

∥∥∥∥∥Ω2
∏
x:X

Bn+2Fx

∥∥∥∥∥
0

And we can always view cohomology groups as k-th homotopy groups in the sense
of Univalent Foundations Program 2013, Chapter 8:

Hn(X,F) =

∥∥∥∥∥Ωk
∏
x:X

Bn+kFx

∥∥∥∥∥
0

= πk(
∏
x:X

Bn+kFx)

The construction is covariantly functorial in the following sense:
If ϕ :≡ (x : X) 7→ ϕx :

∏
x:X(Fx → Gx) is a homomorphism of sheaves, then there

is a homomorphism

Hn(X,ϕ) : Hn(X,F)→ Hn(X,G)

The construction is contravariantly functorial in the following sense:
Given f : Y → X, there is a homomorphism:

f ∗ : Hn(X,F)→ Hn(Y, f ∗F)
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1.4 A long exact sequence

Let us introduce an abbreviation for a sheaf F ≡ (x : X) 7→ Fx:∏
F :≡

∏
x:X

Fx

Let ϕ : F → G be a homomorphism of abelian sheaves on a type X. Then there
is a sheaf Kϕ given as

K :≡ Kϕ :≡ (x : X) 7→ ϕ−1x (∗)

For any x : X we get a fiber sequence:

· · · → Ω2Gx → ΩKx → ΩFx → ΩGx → Kx → Fx → Gx

By Proposition 1.4 and Proposition 1.3, for any n : N there is a fiber sequence:

· · · → Ω
∏

BnF → Ω
∏

BnG →
∏

BnK →
∏

BnF →
∏

BnG

We can apply Univalent Foundations Program 2013, Theorem 8.4.6 to get an exact
sequence (of groups and pointed types)

· · · → π1

(∏
BnF

)
→ π1

(∏
BnG

)
→ π0

(∏
BnK

)
→ π0

(∏
BnF

)
→ π0

(∏
BnG

)
And therefore an exact sequence of cohomology groups:

· · · → Hn−1(X,F)→ Hn−1(X,G)→ Hn(X,K)→ Hn(X,F)→ Hn(X,G)

eventually starting with the proposition
∏

x:X ΩGx.

1.5 A Mayer-Vietoris lemma
Lemma 1.5
Let F be an abelian sheaf on X and assume we have a pushout square of spaces

S U

V X

ϕU

ϕV ψU

ψV

Then
(a) The square

∏
ϕ∗Uψ

∗
UF

∏
ψ∗UF

∏
ψ∗VF

∏
F
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is a pullback.

(b) If one of the maps∏
F →

∏
ψ∗UF and

∏
F →

∏
ψ∗VF

is what Myers 2019 calls a ‖_‖0-fibration, then we also have a pullback of
cohomology groups:

Hn(X,F) = Hn(U, ψ∗UF)×Hn(S,φ∗Uψ
∗
UF) H

n(V, ψ∗VF)

(c) We have a Mayer-Vietoris sequence:

→ Hn−1(S, ϕ∗Uψ
∗
UF)→ Hn(X,F)→ Hn(U, ψ∗UF)⊕Hn(V, ψ∗VF)→ Hn(S, ϕ∗Uψ

∗
UF)

Proof (a) This is (Rijke 2019, Proposition 2.1.6).

(b) By Myers 2019, Theorem 3.5, if we apply a modality with surjective units
to a pullback square of which one of the span-maps is a fibration for the
modality, then the pullback property is preserved by the modality. ‖_‖0 has
surjective units, so the theorem applies.

(c) By Wellen [2017], Lemma 3.3.6, we have a pullback square for each n : N:∏
ϕ∗Uψ

∗
UB

nF 1

(
∏
ϕ∗Uψ

∗
UB

nF)× (
∏
ϕ∗Uψ

∗
UB

nF)
∏
ϕ∗Uψ

∗
UB

nF−

We rotate and paste a transformed Item (a) from above:

(
∏
ψ∗VB

nF)× (
∏
ψ∗UB

nF)
∏
BnF

(
∏
ϕ∗Uψ

∗
UB

nF)× (
∏
ϕ∗Uψ

∗
UB

nF)
∏
ϕ∗Uψ

∗
UB

nF

∏
ϕ∗Uψ

∗
UB

nF 1

−

Now we take the fiber of the top map:

1 Ω
∏
ϕ∗Uψ

∗
UB

nF

(
∏
ψ∗VB

nF)× (
∏
ψ∗UB

nF)
∏
BnF

(
∏
ϕ∗Uψ

∗
UB

nF)× (
∏
ϕ∗Uψ

∗
UB

nF)
∏
ϕ∗Uψ

∗
UB

nF

∏
ϕ∗Uψ

∗
UB

nF 1

−
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So we get the desired fiber long exact sequence again by taking the long
exact sequence of homotopy groups.
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