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Abstract

It is known that the universal higher topos approach, e.g. using Eilenberg-

MacLane spaces, to cohomology, lacks the computational accessability of the

more classical de�nitions. A similar gap exists, if homotopy type theory is

used as a basis for synthetic mathematics, for example for synthetic di�er-

ential geometry or the more recently extended synthetic algebraic geometry.

In synthetic mathematics, which we consider to take place internally in some

particular toposes, the gap seems to be even wider, since the middle ground

of the derived functors of homological algebra does not support one of the

standard techniques: injective resolutions use the axiom of choice and there

is no hope of having an internal construction. This work shows that there is

a way around this gap - at least in some special cases. From what is shown

in special cases, it is plausibel to hope for a general theory, where the con-

nection between cohomology via higher types is connected to homological

algbra by a choice principle related to the topology of a grothendieck topos.
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1 Idea

In pure mathematics, interesting information about objects X can often be cap-
tured by a sequence of abelian groups, called the cohomology of X. Besides the
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group structure, the construction is functorial and there is usually also a ring struc-
ture on the totality of the groups and lots of properties hold. There is a second
parameter, the coe�cients. The default in homotopy theory is usually the group
(Z,+), while it can also be a sheaf of special functions on a space in algebraic or
di�erential geometry.
In these notes, we will use a somewhat overly abstract de�nition of cohomology,
where the coe�cients can be a spectrum varying over a space. This is a conve-
nient way to set everything up and contains the case we are really interested in:
cohomology with coe�cients in an abelian group varying over a space.
For an object X in a topos, this would include the case of a sheaf of abelian
groups on A, which received a lot of attention historically. In the classical way
to develope a theory of cohomology of sheaves, injective resolutions are used in
basic de�nitions and more advanced calculations. These notes are about a simple
test case, which goes a small step in the direction of making similar computations
internally in homotopy type theory.
We do not believe, that there is a genral way to construct injective resolutions
internally. Instead, we will aim at mimicing, what is called an e�acement in
Grothendieck's Tohoku-Paper ([4]). Roughly, an e�acement of an object A of an
abelian category, is a monomorphism A → M , that will be zero on cohomology
groups, starting in degree one. In contrast to injective resolutions, e�acements are
speci�c to a single functor and not something which might exist in general in the
domain of a functor.
Instead of an e�acement, that erases all cohomology on a space, we will introduce
a simple construction of a monomorphism, which erases one speci�c element of a
speci�c cohomology group for some special situations � along the same lines as
[1]. This turns out to be enough to repeat one calculation, which establishes that
cohomology has a universal property � that of a so called universal ∂-Functor .
Which is almost the same statement as [1][Propposition 4.2], but in a di�erent
context.
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along the way.
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and had the idea to call the resolutions in the article local.
And, most crucially, about ten years ago, Michael Fütterer gave a talk about group
cohomology in our student organized seminar in Karlsruhe, where he thouroughly
explained how delta-functors are used. Without those memories in the back of my
mind, there would have been no basis for the ideas in this article.

2 Spectra and Cohomology

A spectrum is roughly an in�nit delooping of a (pointed) space. An n-th delooping
of a pointed space A which is also (n− 1)-connected is unique and usually written
as BnA or K(A, n) and called an Eilenberg-MacLane space. We will just write An
for an n-th delooping in this article.
It is known, that in HoTT, a (0-truncated) abelian group can be delooped arbi-
trarily often ([5]).
Contents of this section are from Mike Shulman's posts on the HoTT-Blog about
cohomology, Floris van Doorn's thesis ([6])[section 5.3] and common knowledge in
the �eld that is not written up.
Suppose we have a pointed type A with delooping Ak for any k : N. Then,
analogous to the de�nition of the k-th homotopy group

πk :≡ ‖ΩkA‖0

one could de�ne homotopy groups of negative degree −k by:

π−k :≡ ‖Ak‖0

Note that these will be trivial for any Eilenberg-MacLane spectrum, since for those,
Ak+1 is k-connected for k : N. In general, spectra with trivial homotopy groups in
negative degree are called connective. The result in this article is concerned with
Eilenberg-MacLane spectra.
We will use spectra varying over a space as coe�cints for cohomology, which cor-
responds to the classical concept of parametrized spectra. We �x our terminology
in the following de�nition.

De�nition 2.1
(a) A spectrum is a sequence of pointed types (Ak)k:N, together with pointed

equivalences Ak ' ΩAk+1.

(b) A spectrum (Ak)k:N is connective or an abelian ∞-group, if ‖Ak+1‖0 ' 1 for
all k : N.

(c) Let X be a type. A parametrized spectrum over X, is a dependent function,
which assigns to any x : X, a spectrum (Ax,k)k:N. For brevity, We will call a
parametrized spectrum A ≡ x 7→ (Ax,k)k:N over X just spectrum over X.

(d) A morphism of spectra A,A′ over X, is given by a sequence of pointed maps
fx,k : Ax,k → A′

x,k for any x : X, such that Ωfx,k+1 = fx,k (using the pointed
equivalences).
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The connective spectra form a nice �subcategory�: We will need the following
(core�ective) construction that turns a spectrum into a connective spectrum. See
de�nition 6.9 for the de�nition of the k-connected cover �Dk

Xd�.

De�nition 2.2
For a spectrum A, the following construction is called the connective cover :

Â :≡ k 7→ Dk−1
A,k

There is also a sequence of pointed maps φk : Âk → Ak, given by the projection
from the connected covers.

The overall purpose of these notes, is to provide a general result about the calcu-
lation of cohomology of types with coe�cients in Eilenberg-MacLane spectra over
them. However, using a general spectrum seemed to make things a bit clearer.
The central result is a theorem, which establishes a universal property of this
cohomology construction. We will postpone the universal property and start with
the basic concepts and continue with some constructions we will need.

De�nition 2.3
The k-th cohomology group of X with coe�cients in A is the following:

Hk(X,A) :≡ ‖(x : X) → Ax,k‖0

An important notion in abelian categories, is that of short exact sequences. And
it is important to us here, since for every short exact sequence (somewhere), there
should be an induced long exact sequence on cohomology groups. The cokernel of
an exact sequence, corresponds to a co�ber of a map of spectra. This is surprisingly
pleasant to construct and work with and I have to thank David Jaz Myers for
explaining this to me:

De�nition 2.4
Let f : A→ A′ be a map of spectra.

(a) The co�ber of f is given by the spectrum

Cf,k :≡ fibfk+1

together with the map c : A′ → Cf , where ck is induced in the following
diagram of pullback-squares:

Ak A′
k 1

1 Cf,k Ak+1

1 A′
k+1

fk

4



(b) The �ber of f is given by the spectrum

fibf,k :≡ fibfk

Note that f : A → A′ is always the �ber of its co�ber and conversely, f : A →
A′ is always the co�ber of its �ber, which is very di�erent from the situation in
a general abelian category, where for example not every map is the kernel of its
cokernel.
For the following de�nition, we just pick one of the two possibilities to name it �
the �co�ber� is a bit better at reminding us, that we can do more with it than what
we are used to from homotopy �bers. For Eilenberg-MacLane spectra, this notion
coincides with that of a short exact sequence of the underlying abelian groups.

De�nition 2.5
A sequence of morphisms of spectra over X

A A′ A′′f g

is a co�ber sequence, if the following equivalent statements hold:

(a) gx is the co�ber of fx for all x : X

(b) fx is the �ber of gx for all x : X

(c) fx,k is the �ber of gx,k for all x : X and k : N
If all spectra involved are Eilenberg-MacLane spectra, we call the sequence exact,
and vice versa, if we speak of a short exact sequence of spectra (over X), we assume
all spectra involved are Eilenberg-MacLane and we have a co�ber sequence.

Lemma 2.6
If A→ A′ → A′′ is a co�ber sequence, then the induced square:∏

x:X Ax,k
∏

x:X A
′
x,k

1
∏

x:X A
′′
x,k

is a pullback square for all k : N.

Proof
∏

maps families of pullback squares to a pullback square.

This is just tailored to prove the following proposition:

Proposition 2.7
For any co�ber sequence

A→ A′ → A′′

of spectra over X, there is a long exact sequence of cohomology groups:
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. . . Hn−1(X,A′′)

Hn(X,A) Hn(X,A′) Hn(X,A′′)

Hn+1(X,A) Hn+1(X,A′) . . .

Proof Apply homotopy �ber sequence to last proposition for all k : N.

3 Generic Resolution of cohomology classes

Contents of this section should be new.
Terminology is somewhat made up and not really commonly used. This section
produces local resolutions, which allow a proof of universality of H1 as a ∂-functor.
It doesn't seem to be possible, to extend this construction for higher degrees.
We will start by explaining how the construction of the local resolutions in this
section was derived. For the �rst iteration, only elements of the �rst cohomology
group H1(X,A) were considered. In this case, an element T : H1(X,A) can be
represented by an A-torsor, or more precisely, Tx is an Ax-torsor for any x : X.
Let us relax the usual notion of �bre bundle a bit, to also admit the case of our
A-torsors, i.e. let the following be the type of A-�bre bundles over X:∑

T :X→U

‖Tx = Ax‖

Then, A-torsors will in particular also be A-�bre bundles.
A canonical trivialization for �bre bundles with constant prescribed �ber is given
in ([7])[De�nition 4.9, De�nition 4.11] � but this works for the more general notion
as well. The canonical trivialization is given by

VT :≡
∑
x:X

Tx = Ax

Then, from the de�nition above, we get that π1 : VT → X is surjective and the
second projection will give a trivialization witness for the pullback of T along π1.
Now, to still work just with spectra over one �xed space, we have to push-forward
the construction above. But that really just means we have to take a dependent
product instead of a sum. So the resulting dependent group, were T is trivialized
at i = 1, is just:

x 7→
∏
Tx=∗

Ax,i

This works also in higher degrees, for �nitely many cohomology classes simultane-
ously and can be turned into an Eilenberg-MacLane-spectrum. All of this is the
topic of lemma 3.3.
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De�nition 3.1
Let k : N.
(a) A dependent function χ : (x : X) → Ax,k is called a ((k − 1)-)gerbe.

(b) A (mere) resolution of a gerbe χ : (x : X) → Ax,k is a type Mχ together
with a map ι : A→Mχ, such that the induced map on gerbes

ιk :
∏
x:X

Ax,k →
∏
x:X

Mχ,k

maps χ to a class (merely) equal to ∗.

(c) A resolving sequence for χ : (x : X) → Ax,k is a short exact sequence of
Eilenberg-MacLane spectra over X, such that the �rst map resolves χ.

We will sometimes call these resolutions local resolutions, to emphasize the dif-
ference to classical resolutions, which usually resolve all cohomology classes at
once.

It is possible to resolve �nitely many cohomology classes for k = 1 using the
construction in the proof of lemma 3.2 below.
Fortunately, it is possible to make this construction pointwise, which will be the
following lemma and then extend it to Eilenberg-MacLane spectra over X, which
will be the almost identical lemma 3.3.

Lemma 3.2
Let A be an Eilenberg-MacLane spectrum, and χ1, . . . , χn : Ax,1.

(a) There is a morphism
ιχ1,...,χn : A→Mχ1,...,χn

(b) The map ι is a monomorphism at degree 0.

Proof (a) Take

M(χ1,...,χn),l :≡

( ∏
i=1,...,n

(χi = ∗)

)
→ Al

and for ι(χ1,...,χn),l(a) the constant function with value a : Al. Then, for any
i : N there is

idχi=∗ :
∏
p:χi=∗

χi = ∗

so we have ιχ1,...,χn(χi) = ∗ for any 1 ≤ i ≤ n.

(b) A1 is connected, so we merely have pi : χi = ∗ and therefore merely

p :
n∏
i=1

(χi = ∗)

We want to show, that for all a, a′ : A0 we can conclude a = a′ from ι(a) =
ι(a′). The latter is a proposition, so we can use p. But then we have:

ι(a)(p) = ι(a′)(p)

and therefore, by de�nition of ι, a = a′.
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Lemma 3.3
Let A be an Eilenberg-MacLane spectrum over X, k : N and χ1, . . . , χn : (x :
X) → Ax,k+1 �nitely many cohomology classes.

(a) There is a morphism
ιχ1,...,χn : A→Mχ1,...,χn

such that (ι(χ1,...,χn),k+1)(χi) = ∗.

(b) The maps ι and ι̂ are pointwise monomorphisms at degree 0.

Proof (a) By applying lemma 3.2 (a) pointwise and function extensionality.

(b) By applying lemma 3.2 (c) pointwise.

We can use lemma 3.3 (b) to construct short exact sequences, such that ι̂∗(χi) is
zero, which will later help us to extend morphisms between long exact sequences.
However, it is sometimes easier to deal with lemma 3.3 (a), so this will appear
again as well.
It is natural and will later be useful, to compare di�erent resolutions, sometimes of
the same gerbe, sometimes of di�erent gerbes. To do that, we can use morphisms:

De�nition 3.4
A morphism of resolving sequences for χ : (x : X) → Ax,k and ξ : (x : X) → A′

x,k,
is for all x : X and i ∈ N a morphism of sequences of the following form:

Ax,i Rχ,x,i Cχ,x,i

A′
x,i Rξ,x,i Cξ,x,i

φx,i

� that means all squares commute and φx,k(χx) = ξx.

As the author was made aware by a comment of David Wärn, this de�nition lacks
a natural coherence between the two triviality proofs of the cohomology classes.
This seems to be no problem so far.
In most applications, φ will be the identity and we will use these morphisms to
compare di�erent resolutions of the same class. One exception is the following:

Lemma 3.5
Let χ : (x : X) → Ax,k and φ : A → B be a morphisms of spectra over X, then
there is a span of morphisms between the standard local resolution for φ(χ) :≡
(x 7→ φx(χx)) and the standard local resolution for χ, of the following shape:

A M̂χ Cok(ι̂χ)

B ((χx = ∗) → Bx, k)x:X,k:N Cok(. . . )

B M̂φ(χ) Cok(. . . )

ι̂χ
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Proof For a morphism φ : A→ B of spectra over X, we can construct a start of
the desired morphism:

Bx,0 Mφ(χ),x,0

Ax,0 Mχ,x,0

φx,0

where the new arrow is a morphism of groups, given by composition with the map
(χx = ∗) → (φx(χx) = ∗) and φx,0. We can take connective covers and get an
induced morphism between the cokernels:

Bx M̂φ(χ),x Cok(ι̂φ(χ))

Ax M̂χ,x Cok(ι̂)

ι̂φ(χ)

φx

ι̂χ

Lemma 3.6
Let χ1, . . . , χn : (x : X) → Ax,k, then there is a morphism from the standard
sequence for each χi to the sequence for all of χ1, . . . , χn.

Proof Same construction as above, this time using precomposition with (and no
postcomposition) (

n∏
i=1

(χi,x = ∗)

)
→ (χi,x = ∗)

4 ∂-Functors

The following de�nition, from ([3, p. 2.1]) and originally from ([4]), is specialized to
our needs. Grothendieck makes a de�nition for additive functors from an abelian
category to a preadditive category. We just state it for abelian categories and will
later apply it only to functors from dependent abelian groups over a �xed type to
abelian groups. While we expect both of these types to admit the structure of an
abelian category, we have proved neither and we will use neither in any proofs in
this article. Instead, we will only use basic facts about abelian groups.

De�nition 4.1
Let C and C ′ be abelian categories.
A ∂-Functor is a collection of functors T i : C → C ′, where 0 ≤ i < a with a ∈ N∪
{∞}, together with a collection of connecting morphisms ∂S,i for any short exact
sequence S and 0 ≤ i ≤ a, subject to the following conditions:
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(a) Let S be a short exact sequence

0 → A′ → A→ A′′ → 0

in C. Applying the T i yields a complex, together with connecting morphisms
(∂S,i)i∈N:

T 0(A′) T 0(A) T 0(A′′) T 1(A′) T 1(A) . . .
∂S,0

(b) For any homomorphism to a second short exact sequence

0 → B′ → B → B′′ → 0

and any valid i the corresponding square commutes:

T i(A′′) T i+1(A′)

T i(B′′) T i+1(B′)

∂

∂

De�nition 4.2
Let T and T ′ be ∂-Functors de�ned for the same indices.
A morphism of ∂-Functors f : T → T ′ is given by a natural transformation f i :
T i → T ′i for each valid i, such that for any short exact sequence

0 → A′ → A→ A′′ → 0

the following square commutes:

T i(A′′) T i+1(A′)

T ′i(A′′) T ′i+1(A′)

∂

f i
A′′ f i+1

A′

∂

De�nition 4.3
A ∂-Functor T is called universal, if for any T ′, de�ned for the same indices,
any natural transformation f 0 : T 0 → T ′0 extends uniquely to a morphism of
∂-Functors f : T → T ′.

The following is provable by a constructive adaption of Prop 2.2.1 in the Tohoku-
Paper:

Theorem 4.4
Let X be a type. The functors H i mapping dependent abelian groups over X to
abelian groups form a universal ∂-Functor.
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Before proving the theorem, we will establish some lemmas about extending mor-
phisms between ∂-Functors. In the following, let X be a type, A a dependent
abelian group over X, T a ∂-Functor and f a morphism of ∂-Functors, de�ned up
to degree i− 1.

Lemma 4.5
For any gerbe χ : (x : X) → Ax,k let S be a short exact sequence

A Rχ Cχ
ιχ cχ

of Eilenberg-MacLane spectra over X resolving χ. There is a unique

ext(χ, S) : T i(A)

(with T as in theorem 4.4) such that for any x : H i−1(Cχ) with ∂H,S,i−1(x) = |χ|
we have ∂T,S,i−1(f

i−1(x)) = ext(χ, S).

Proof (of lemma 4.5) Let
A→ Rχ → Cχ

be a short exact sequence of Eilenberg-MacLane spectra resolving χ. The following
diagram commutes:

H i−1(A) H i−1(Rχ) H i−1(Cχ) H i(A) H i(Rχ) . . .

T i−1(A) T i−1(Rχ) T i−1(Cχ) T i(A) T i(Rχ) . . .

f i−1 f i−1

∂

f i−1

ι̂∗χ

c∗χ ∂

The upper row is exact and the lower row is a complex.
Let E(χ, S) be the type of all possible values of f i in T i(A), with which we mean all
y : T i(A) such that there merely is x : H i−1(Cχ) with ∂(x) = |χ| and ∂(f i−1(x)) =
y. Then E(χ, S) is inhabited, since ιχ(|χ|) = 0 and by exactness, there has to be
a mere preimage under ∂. So we need to show, that E(χ, S) is a proposition.
Let x : H i−1(Cχ) such that ∂(x) = |χ|. Then any other element with this prop-
erty will be of the form x + k, with k in the kernel of ∂. Any k like that, has
a mere preimage k′ : H i−1(Rχ) and since the lower row is a complex, we have
∂(c∗χ(f

i−1(k′))) = 0.
So for any extension y : T i(A) we have

y = ∂(f i−1(x+ k))

= ∂(f i−1(x)) + ∂(f i−1(k))

= ∂(f i−1(x)) + ∂(c∗χ(f
i−1(k′)))

= ∂(f i−1(x))

This means we can de�ne ext(χ, S) to be the unique element of E(χ, S).

Lemma 4.6
For any cohomology classes χ : (x : X) → Ax,k, ξ : (x : X) → Ax,k and any
morphism
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A Rχ Cχ

A′ Rξ Cξ

φ

of short exact resolving sequences Sχ and Sξ for χ and ξ in the sense of de�ni-
tion 3.4, we have:

T k(φ)(ext(χ, Sχ)) = ext(ξ, Sξ)

Proof (of lemma 4.6) Apply the ∂-Functors H and T to the morphism of re-
solving sequences, to get the following diagram:

H i−1(Rχ) H i−1(Cχ) H i(A) H i(Rχ) . . .

H i−1(Rξ) H i−1(Cξ) H i(A′) H i(Rξ) . . .

T i−1(Rχ) T i−1(Cχ) T i(A) T i(Rχ) . . .

T i−1(Rξ) T i−1(Cξ) T i(A′) T i(Rξ) . . .

a χ 0

a′ ξ 0

b ext(χ, Sχ)

b′ ?

f i−1

f i−1

φ∗

f i−1 f i−1

T i(φ)

From exactness of the upper sequence, we get that there is a preimage a of χ. Let
a′ denote the image of a in H i−1(Cξ), then a

′ will be a preimage of ξ in the other
sequence by commutativity. That means, b′ will be mapped to ext(ξ, Sξ), but by
commutativity, ext(χ, Sχ) will be mapped to the same thing by T i(φ). So

T i(φ)(ext(χ, Sχ)) = ext(ξ, Sξ)

Proof (of theorem 4.4) First of all, H is a ∂-functor by ??.
To extend a given morphism f 0, we will construct f i : H i → T i recursively for i ∈
N. The construction of f i will be done pointwise, for each element of H i(X,A)
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using the recursion principle for 0-truncation. Since the codomain of f i is 0-
truncated, the latter means, we can just assume that each element is of the form
|χ| : H i(X,A) for some cohomology class χ : (x : X) → Ax,i.
So assume i 6= 0 and let χ : (x : X) → Ax,i. By lemma 3.3 we have the standard
short exact sequence Sχ resolving χ, so we can use lemma 4.5 to construct an
image f i(|χ|) :≡ ext(χ, Sχ).
To see that a natural homomorphism of abelian groups f i can be constructed in
this way, we will lemma 4.6.
We can apply lemma 4.6 to the morphism from lemma 3.6, to see that we could
have de�ne f i(|χ|) as well by a resolution of the three classes χ, ξ, χ + ξ : (x :
X) → Ax,i. But this is already enough to conclude that f i(|χ| + |ξ|) = f i(|χ) +
f i(ξ), by the homomorphism properties of the maps involved in the construction
in lemma 4.5.
For a morphism φ : A → A′ of spectra over X, we can use the morphism of
resolving sequences from lemma 3.5. Then lemma 4.6 tells us directly, that f i is
natural.
For the commutativity of f i with connecting morphisms, let x : X and consider a
short exact sequence S:

Ax A′
x A′′

x

ψx

For any χx : Ax,i, we can construct the following diagram:

Ax,i A′
x,i A′′

x,i

Ax,i
̂(

(χx = ∗) → A′
x,i

)
Cok( ̂const ◦ ψx,i)

Ax,i ̂((χx = ∗) → Ax,i) Cok(ĉonst)

ψx,i

̂const◦ψx,i

ĉonst

If we know ψx,i(χx) = ∗, then χx,i will also equal ∗ in
(
(χx = ∗) → A′

x,i

)
and

((χx = ∗) → Ax,i). This is still true in connective covers. So we have morphisms
between three resolving sequences and we can apply lemma 4.6 twice to get:

ext(χ, S) = ext(χ, Sχ) ≡ f i(|χ|)

� where S is the given short exact sequence and Sχ the standard resolving sequence
for χ.
What remains now, is to use this to show that the following diagram (from the
LES for S) commutes:

H i−1(A′′) H i(A)

T i−1(A′′) T i(A)

∂

f i−1 f i

∂
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So let |ξ| : H i−1(A′′) and |χ| :≡ ∂(|ξ|). Then, by exactness, we know ψ∗(|χ|) :
H i(A′) is zero. This means the underlying class is merely zero and we can apply
what we just proved, to (merely) get that

∂(f i−1(|ξ|)) = ext(χ, S) = ext(χ, Sχ) ≡ f i(|χ|) = f i(∂(|ξ|))

Done.

5 Higher direct images

This is a guess I haven't really thought about.

De�nition 5.1
Let f : X → Y be a map.

(a) Let A be an abelian group over X. Then

(f∗A)y :≡
∏

x:fibf (y)

Ax

is the direct image of A.

(b) Let A be a spectrum over X. Then

(f∗A)y,k :≡
∏

x:fibf (y)

Ax,k

is a spectrum over Y and the following groups over Y(
Rkf∗A

)
y
:≡ ‖f∗Ay,k‖0

are the higher direct image groups of f and A over Y .

Theorem 5.2
Let f : X → Y be a map. Then, for varying k ∈ N, the functors Rkf∗ form a
universal ∂-functor.

Proof Apply theorem 4.4 for each y : Y .

De�nition 5.3
Let f : X → Y be a map. For A an abelian group over Y , the pull-back of A along
f is the dependent abelian group given for x : X by

(f ∗A)x :≡ Af(x)

Remark 5.4
Let the following be a pullback square of types

X ′ X

S ′ S

g′

f ′ f

g

14



and A a spectrum over X. There is a morphism

g∗Rif∗A→ Rif ′
∗(g

′∗A)

Proof Right side:

Rif ′
∗(g

′∗A) ≡ Rif ′
∗(x

′ 7→ Ag′(x′))

≡ s′ 7→

∥∥∥∥∥∥
∏

x′:fibf ′(s′)

Ag′(x′),i

∥∥∥∥∥∥
0

Left side:

g∗Rif∗A ≡ g∗

s 7→
∥∥∥∥∥∥
∏

x:fibf (s)

Ax,i

∥∥∥∥∥∥
0


≡ s′ 7→

∥∥∥∥∥∥
∏

x:fibf (g(s′))

Ax,i

∥∥∥∥∥∥
0

Use the general fact about pullbacks, that∏
s′:S′

fibf ′(s
′) ' fibf (g(s

′))

is induced by g′.

This is weird - the induced map shouldn't be an equivalence in general.

6 Local Resolutions in Synthetic Algebraic Ge-

ometry

In this section we construct local resolutions for a good subcategory of the depedent
modules over a scheme in synthetic algebraic geometry.
Let R be a �xed commutative ring, serving as a base ring for the de�nitions from
the preprint [2], we will now import:

De�nition 6.1
Let A be an R-algebra.

(a) For f : A let
D(f) :≡ f is invertible

be the proposition that f has a multiplicative inverse.

(b) A subtype U : X → Prop of any type X is open, if for all x : X, there merely
are f1, . . . , fn such that U(x) = D(f1) ∨ · · · ∨D(fn).
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(c) The type
SpecA :≡ HomR(A,R)

of R-algebra homomorphisms is called the spectrum of A and there is a
correspondence with external a�ne spectra in the Zariski-topos.

(d) A scheme is a type X which is covered by �nitely many open a�ne subtypes.
These schemes are expected to correspond to external quasi compact, quasi
separated schemes, locally of �nite type.

De�nition 6.2
LetM be an R-module. M is weakly quasi coherent, if the canonical R-linear map

m

fk
7→ ((_ : f inv) 7→ f−km

fk
) :Mf →MD(f)

is an isomorphism. A dependent R-module M : X → R-Mod is weakly quasi
coherent, if it is pointwise weakly quasi coherent.

Conjecture 6.3
Let X be an a�ne scheme and M : X → R-Mod weakly quasi coherent, then for
all n > 0:

Hn(X,M) = 0.

Proof The case n = 1 is proven in [2] and the method there extends at least to
arbitrary external n.

De�nition 6.4
Let X,Y be schemes and.

(a) For M : Y → R-Mod and f : X → Y let f ∗M :≡ (x : X) 7→Mf(x).

(b) For M : X → R-Mod and f : X → Y let f∗M :≡ (y : Y ) 7→
∏

x:fibf (y)
Mπ1(x).

Both operations preserve weakly quasi coherent modules by [2][Theorem 9.1.11].
At the heart of the construction of local resolutions below, is what is called Zariski-
local choice in [2] and justi�ed as an axiom there. A special case is local-triviality
of gerbes:

Axiom 6.5
Let X = SpecA be an a�ne scheme and M : X → R-Mod. For n > 0 and each
G :

∏
x:X K(Mx, n) there merely is a Zariski cover, i.e. coprime f1, . . . , fn : A such

that on each subtype D(fi) :≡ (x : X) 7→ D(fi(x)), G is trivial.

With that, there merely are �nite covers of schemes trivializing any M -gerbe G.
Let us denote the coproduct of such a cover with UG, so we have a surjection uG :
UG → X such that

∏
x:UG

Gx = Mx. If we started with a weakly quasi coherent
M , we get an injective map of weakly quasi coherent modules:

Mx →M
fibuG (x)
x

16



where the domain is weakly quasi coherent, since it is (uG∗u
∗
GM)x.

To get a resolution from that, we need to see that cokernels of monomorphisms of
weakly quasi coherent modules are weakly quasi coherent. In symbols, for N ⊆
M one of those morphisms, we need:

(M/N)f = (M/N)D(f).

by algebra (M/N)f =Mf/Nf . This means we are done, if (M/N)D(f) =MD(f)/ND(f).
To see this holds, let us consider 0 → N → M → M/N → 0 as a short exact
sequence of dependent modules, over the subtype of the point D(f) ⊆ 1 = SpecR.
Then, taking global sections, we have an exact sequence

0 → ND(f) →MD(f) → (M/N)D(f) → H1(D(f),M)

� but D(f) = SpecRf is a�ne, so the last term is 0 and (M/N)D(f) is the cokernel
MD(f)/ND(f). So we know that dependent wqc modules over a scheme, always
merely have local resolutions consisting of dependent wqc modules.
By ?? 6.3, the types K(Mx, n)

Uχ , where Mx is wqc and n > 0 are 0-connected �
note that Mx is weakly quasi coherent on Uχ, since it is the push-forwad of Mx

along the map Uχ → 1.
This means that

(
K(Mx, n)

Uχ
)
n:N is an Eilenberg-MacLane spectrum. So we have

found resolving sequences for all gerbes on a scheme with coe�cients in weakly
quasic coherent modules.

Appendix

Here, we will prove things about a general modality.

De�nition 6.6
A modality (on a universe U) is a map # : U → U together with a dependent map
η :
∏

X:U X → #X such that for all A : U and B : #A → U the following map is
an equivalence:

_ ◦ ηA :

(∏
x:#A

#B(x)

)
→

(∏
y:A

#B(ηA(y))

)

Remark 6.7
Let f : X → Y be any map. Then there is a map #f : #X → #Y , constructed
by using the property above with A ≡ X and B ≡ _ 7→ Y . This is natural in that
the following square commutes:

X #X

Y #Y

ηX

f #f
ηY

We will drop the index of η from now on, and, for example, just write η : X →#X. For any pointed X, the type #X is pointed by ∗ :≡ η(∗).
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De�nition 6.8
(a) A type X is #-connected, if #X = 1.

(b) In the case # ≡ ‖_‖k, we also just say �k-connected�.

De�nition 6.9
Let X be a pointed type.

(a) The #-connected cover of X is the type:

D#
X :≡

∑
x:X

η(x) = η(∗)

(b) In the case # ≡ ‖_‖k, we write also just Dk
X .

Lemma 6.10
Let X and Y be pointed types. If Y is #-connected, then any pointed map f :

Y → X lifts to a map f̂ : Y → D#
X , i.e. the following diagram commutes:

D#
X

Y X

π1

f

f̂

Proof We will use the universal property of the following pullback square to
construct f̂ :

D#
X 1

X #X
π1 η(∗)

η

To start with the construction of a cone, we apply η to the given pointed map f :
Y → X:

1

Y #Y

X #X

η(∗)

f

η

#f

η

There is always a map #Y → 1 and since #Y = 1, it is enough to show that#f(∗) = η(∗) holds, to produce a cone. Since f is pointed, we have f(∗) = ∗ and
therefore η(f(∗)) = η(∗). By naturality of η, that yields #f(∗) ≡ #f(η(∗)) =
η(∗). So we can complete the diagram above to a cone and get the desired induced
map:

18



D#
X 1

Y

X #X

π1 η(∗)

f

f̂

η

It turns out, that we can lift equalities along π1 in the following sense:

Corollary 6.11
In the situation of lemma 6.10, if we have y : Y and f(y) = f(∗), then f̂(y) =

f̂(∗).

Proof The lemma provides us with a map from pointed maps Y → X to lifts
Y → D#

X . This means we are done, if we manage to reformulate f(y) = f(∗) as
an equality of pointed maps 1 → X.
So let p : f(∗) = ∗ be the pointing of f and q : f(y) = f(∗) be the given equality.
Then (_ 7→ f(∗)) : 1 → X is pointed by p and (_ 7→ f(y)) : 1 → X is pointed by
q · p. But the requirement for maps equal maps φ = ψ to equal as pointed maps,
is just that the induced φ(∗) = ψ(∗) is compatible with the pointings of φ and ψ,
which is witnessed by reflq·p in our case.

Remark 6.12
If, in the situation of the lemma, the pointed map f : Y → X is an monomorphism,

then f̂ is also an monomorphism.

Proof Let x, y : Y and p : f̂(x) = f̂(y). So π1(f̂(x)) = π1(f̂(y)) and f(x) = f(y)
because of commutativity. Then, x = y because f is an monomorphism.
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