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Introduction

The first aim of this project was to implement the Grothendieck group (or group completion,
or even groupification) of a commutative monoid in Cubical Agda: To a commutative monoid
M we want to associate an Abelian group K (M) in an universal manner. Mathematically
speaking, this means that we would like to construct a left adjoint K : CMon — AbGrp
to the forgetful functor U : AbGrp — CMon. Even though we have not used the language
of adjoint functors (or even functors) in Agda, we have provided a proof of the expected
universal property the construction K (M) should satisfy. The groupification K (M) of M
comes equipped with an universal morphism M — U(K(M)) such that for any morphism
f: M — U(A), where A is an Abelian group, there is an unique induced morphism i :
K (M) — A, satisfying

It was initially planned to then use this universal property in Agda, to understand the
group completion as the loop space of the Eilenberg-MacLane space of M. However, in the
process of completing the first stage of the project, some long and laboursome computa-
tions appeared in the proofs. These being mathematically very easy, yet occupying so much
space in the code, bothered me aesthetically. Hence instead of moving on to the originally
planned second part of the project, I instead implemented a solver with reflection interface
for both commutative and non-commutative monoids. The commutative monoid solver was
then used to tidy up the code of the implementation of the Grothendieck group a bit.

I tried to supplement this document with enough code to help me bring across my train
of thought. However, when the code got a little bit more involved, I realized it is no longer
best to explain line by line what my thought process was, as it tends to get too loaded and
confusing. Specifically this is the case when we talk about the universal property of the
group completion and the reflection interface of the monoid solver. In these cases, I try
to give a less rigid overview over the subject. This also applies to the longer proofs of the
project - some of them are not (fully) included here, for I intend this document to be an
overview over the main points of my work, rather than an in depth dive into the technicali-
ties. Anybody wanting to understand the code line by line is probably best advised to take
a look at the code directly. I have included the complete list of this project’s pull requests
to the Cubical library at the end of the document.

Last but definitely not least, I would like to thank Felix Cherubini for not only introducing
me to HoT'T, but also to Agda and of course for his supervision on this project! He was



readily available for any question I had and invested quite a lot of time over the course of
the project, helping me out immensely.



1 Group Completion of a Monoid

In this first part of the document, we implement the group completion of a commutative
monoid and then state and prove its desired universal property.

1.1 The Construction

In classical mathematics, given a commutative monoid (M,e,_- _), one can construct its
group completion by first introducing a congruence relation on the underlying set of M x M:

(al,bl)w(@,bg) < dke M: k-(al-bg):k~(a2-bl).

Then one sets K(M) := M x M/ ~. The monoid law of M x M descends to K (M) and
indeed forms an Abelian group structure together with [(¢, )] as the neutral element and
[(b,a)] as the inverse to [(a,b)].

Perhaps unsurprisingly, this construction can be adopted without change in Agda. Indeed,
given a commutative monoid M : CommMonoid ¢, we proceed exactly as above, by defining
a relation

R:(M2)— (M2) — Type ¢
R(al,bl) ag,bg)ZZ[kE<M>]k-(al-b2)5k-(b1-ag)

Here I should to mention, that there is no reason I use the X-Type instead of its truncated
version 3. Both would have worked out, in the sense that they yield groups satisfying the
same universal property. Now we can use the HIT of set quotients already implemented in
Cubical Agda to divide out the above relation:

M?/R : Type £

M?/R = (M?) /R

Notably this means, that this quotient comes equipped with a witness squash/ to it again
being a set, which Abelian groups are by definition required to be. Furthermore, the neutral
element naturally will have to be

0/R : M2/R

0/R=1[¢e,¢]

Now, in order to construct the group law and inverse law, we must analyze the relation
R. Specifically, in order for the multiplication to descent to the set quotient, it has to be
congruent:

isCongR:Vuuw vv' - Ruu = Rovv = R(u-v) (v -0)

Proving this is an easy but somewhat lenghty calculation. Here I will not include the proof of
congruence, but I do want to mention it for the following reason. When trying to construct



isCongR, one at some point has to prove (a variant of) the equation

(k-s)-((a-b)-(c-d))=(k-(a-c))-(s-(b-d))

for terms k, s, a,b,c,d of { M ). For commutative monoids this is ”obviously” true, but even
the shortest of proofs will be annoyingly long and require many nested applications of the
commutativity and associativity law. Even worse, one does not learn anything from such a
proof. Since this is not the only time such a situation came up, we decided to implement
a (commutative) monoid solver, having a macro sitting on top of it that automates finding
proofs for such equations. We will talk about this in more detail in the second part of this
document.

Let us return to the construction of the group structure. Once we have convinced ourselves
that R is congruent, it descends to a binary operation

_+/_: M?/R — M2/R — M?/R

on the set quotient.

As far as the inverse law is concerned, recall the construction at the beginning of this
section: The inverse of [(a,b)] is given by [(b,a)]. Thus one gets an inverse law on the set
quotient by showing that R is also congruent with respect to the map

swap : ( M?2) — (M?)
swap=»A(a,b)—b,a

i.e. we claim and show that

h:Vuv— Ruv— R (swap u) (swap v)
h  (k.p)=k, symp

holds. Now this map descends, just like the group law, to an unary operation

-/ M?/R — M2/R

To actually construct the descended group and inverse law, I used a helper construction
already implemented in Cubical Agda (i.e. the elimination property of set quotients), c.f.
the code of the project.

Now that we have constructed the structure required for a group, it remains to show
that it satisfies the desired properties of an Abelian group. That is, we need to show the
following four properties

assoc/R: (zyz: M?/R) w z+/ (y+/2) =(z+/y) +/ 2
rid/R: (z: M?/R) - 2+/0/R==z

rinv/R : (z: M?/R) — z+/ (-/ ) = 0/R

comm/R: (zy: M?/R) »z+/y=y+/x



All of them are easy to prove by again using the elimination property of set quotients to
reduce each of them to the corresponding property of the commutative monoid M?. Except
of course in the case of rinv/R, where one cannot use a corresponding property for monoids
and hence must use another, but nonetheless easy, approach. Take a glimpse at the code
for the here omitted proofs.

Finally, we use this knowledge to actually create the groupification of the given monoid.
What I called K (M) in the classical context above, I called Groupification M in the Agda
code.

1.2 The Universal Property

We want to express the following mathematical property in Agda: Given a commuative
monoid M and an Abelian group A, there is an Abelian group K (M) together with a
morphism 7y : M — K (M) of monoids, such that there is an unique morphism of groups
from K (M) to A making the triangle

M s A

commute. Clearly, this is a reformulation of the data given by the adjunction mentioned
in the introduction. The unit nas of the adjunction is given by m — [(m,e)]. Hence in
Agda, we should set

universalHom : CommMonoidHom M (AbGroup—CommMonoid (Groupification M))
fst universalHom =Am — [ m, ¢ ]

Then it is easily verified, that this morphism satisfies the axioms of a monoid morphism.
Next, suppose we are given any morphism f : M — A of monoids. Its unique extension
K(M) — A is given by [(a,b)] — f(a) — f(b), so in Agda we first introduce a helper
morphism together with a proof, that it is invariant under the relation R:

g=A(a,b) —>fa-fb

proof : (uv: (M2M))(r: RMuv) >gu=guv

(Ignore the extra parameter M of M? and R. This only appears due to the fact that in the
code, these were defined within another module that took the monoid as a parameter.)
Then again using the elimination property of set quotients, we get an induced morphism

inducedHom : AbGroupHom (Groupification M) A
fst inducedHom = elim (A z — isSetAbGroup A) g proof

and it remains to checks that this is indeed a morphism of Abelian groups. This is a some-
what long (but straightforward) calculation, mainly due to the fact, that there is no solver
for groups implemented in the Cubical Agda library.

The analogous version of the above triangle for our Agda implementation therefore is



M A

\ A
universalHom 3! inducedHom

-
-
-

Groupification M

It remains to see, that this triangle commutes and that the induced morphism is uniquely
determined by this property. That it actually is a solution, is to claim that

solution : (m: ( M )) — (fst inducedHom) (fst universalHom m) =f m

and that the solution is unique, is to claim that

unique : (¢ : AbGroupHom (Groupification M) A)
— (YIsSolution : (m: ( M )) — t fst (fst universalHom m) = f m)
— (u: (M2 M)) — ¢ fst [ u] = inducedHom .fst [ u ]

Both of these claims are proven in the code of the project, therefore we have verified the
desired universal property of the groupification of monoids.



2 Monoid Solver

Let us recall the motivation for having a monoid solver. While constructing the Grothendieck
group of a monoid, we encountered the problem of efficiently solving equations of the sort

(k-s)-((a-b)-(c-d))=(k-(a-c))-(s-(b-d)).
With the help of the solver, we can conveniently automate the proof finding process:

lemma:Vksabed— (k-s)-((a-0) - (c-d)=(k-(a-¢)) (s:(b-d)
lemma = solveCommMonoid M

The solver I implemented is not without limitations. It can be the case, that it fails to
construct a proof for a true equation, for instance if more than just the monoidal properties
are used: Maybe the monoid also has the structure of a group, then the solver would fail
to verify a=! - a = e. Also, only equations where the occuring variables are universally
quantified can be solved.

The solver essentially consists of two components - a naive solver and a reflection interface.

2.1 Naive Solving

We want to verify a given equation in a commutative monoid, say
(- y) - z=x-(x-y)- e (Ex)

I will now outline the idea of solving this equation automatically in Agda. In a first step,
we look at the left and right hand side separately and represent them as syntax trees. We
do this by introducing a type of expressions in n indeterminants:

data Expr (M : Type £) (n: N) : Type £ where
| - Fin n — Expr M n
e® : Expr M n
@ Expr M n — Expr M n — Expr M n

Ultimately, we want to evaluate such an expression to produce a term in our monoid. Thus
we need a way to remember which terms the constant expressions |(j) represented in the first
place. For instance in the above example we should have n = 2 and |(1), |(2) could evaluate
to x, y respectively. Clearly £® should evaluate to the unit € of the monoid. In order to
remember this assignment, we store the in (Ex) ocurring variables in an environment vector
of the form

Env: N — Type /¢
Envn=Vec (M)n



i.e. the type of vectors of length n. Constructing such an environment is automatically done
by the reflection interface, which we have yet to discuss. In our example, the environment
vector is the vector v with = and y as entries (in that order). Now we can evaluate any
expression with respect to a given environment:

[ ]:9V{n} —Expr (M)n—Envn— (M)
[e®] v=c¢

[17] v = lookup i v
[e1®@e]v=[ea]v-[e]wv

We now manipulate expressions by normalizing them. The idea is based on the observation,
that an equation in a commutative monoid is true, as soon as every variable in it occurs with
the same multiplicity on both the left and right hand side. Guided by this, the normalization
of an expression should capture exactly these multiplicities. Hence we define the normal
form and normalization of an expression in the following way.

NormalForm : N — Type
NormalForm n = Vec N n

normalize : {n: N} — Expr ( M) n — NormalForm n
normalize (| ) =e[ 1]

normalize £® = emptyForm

normalize (e; ® es) = (normalize e;) B (normalize es)

Here e[ 7 | is the i-th unit vector, emptyForm is the zero vector and H denotes the component-
wise addition of vectors'. For instance, the normalization of the syntax tree ( |(1) @ |(2) ) @ [(1)
is the vector 2 :: 1 :: [].

We can also evaluate a normal form with respect to a given environment vector. Infor-
mally, I like to think about this evaluation as a multiplication of the normal form vector
with the transpose of the environment vector. The formal implementation is the following.

eval : {n: N} — NormalForm n — Envn — ( M)
eval [[v=c¢
eval (z:: zs) (v:: vs) =iterz (A w— v - w) (eval zs vs)

For instance, the evaluation of the normal form 2 :: 1 :: [] with respect to the environment
vector z y  [Jisx - (x-y)-e.

Therefore, we now have two ways of evaluating an expression. We either evaluate with the
function [ ] as is, exactly reproducing the term it was representing, or we first normalize
it and then evaluate it with eval. With a little bit of effort one can prove that evaluation
1s tnvariant under normalization, i.e. that these two ways of evaluation produce the exact
same term in our monoid:

isEqualToNormalform : {n : N}
— (e: Expr ( M) n)
— (v: Env n)
— eval (normalize e) v=[e] v

We can use this to solve equations like (Ex) by representing the left and right hand side
by expressions, then checking if the evaluations of the respective normalizations match

'For a formal definition of these notions take a direct look at the Agda code!



and finally composing these proofs to obtain a witness to the original equation. Formally
speaking, we claim

solve : {n: N}
— (€1 ea: Expr ( M) n)
— (v: Env n)
— (p : eval (normalize e;) v = eval (normalize ey) v)
—s[ea]Jv=[e]v

which easily follows from the invariance of evaluation under normalization.

In case of the example (Ex), this process of solving equations might be schematically illus-
trated as follows:

z-(z-y)-e z-(z-y)-e
o Yoo
eval “eval .
21 21
a~ A
| |
1 1
normalize isEqualToNormalform isEqualToNormalform normalize

(1) @2)) @ (1) Mo (l()e]2)ee

reflection reflection

(-y) z-(r-y)-e
Note that there is a small imprecision in this diagram, in that the evaluation without nor-
malization [ ] as well as the evaluation of the normalization eval depend on an additional
parameter, namely on the environment vector. In this case, this vector is again x :: y :: [].

Now that we have talked about solving equations in commutative monoids, let us quickly
ponder how to adapt this approach to not necessarily commutative monoids. To make
the above approach work, we only have to change what we mean by a normal form of an
expression. Clearly, only counting the occurances of every variable |(i) will not suffice, since
we now also have to take the order they appear in into account. Hence we should replace
the normal forms by the following adjustion.

NormalForm : N — Type
NormalForm n = List (Fin n)

Replacing the definition of normal forms and normalization in the above discussion with
this, one may reread this section to obtain a naive solver for general monoids. In the project,
I have implemented both a solver for commuative and non-commutative monoids - the code
being basically the same apart from the adjustment mentioned above. In particular, the
reflection interface we will discuss next is exactly the same for both!



2.2 Reflection Interface

One thing we did not explain how to do yet, is how to represent the left and right hand
side of an equation in a monoid with syntax trees. Of course, one may do this naively
by constructing the corresponding expressions manually. In a rather trivial situation this
would look like the following

module Example (M : CommMonoid ¢) where
open CommMonoidStr (snd M)

_te-ge-e=¢
_=solve M (e® ® e® @ e®) e® |[] refl

where solve is the function from the previous section. Usually the corresponding syntax
trees will be much more difficult than in this silly example, so maybe we can do even better
than this naive approach. Indeed, there is an automated solution to the issue: The reflection
interface. Note, that there already was a ring solver with its very own reflection interface
implemented in Cubical Agda, so I did not have to start from scratch and only had to tweak
the existing code.

Let us quickly capture the essence of the main routine of the reflection solver. Omitting the
definitions of the technical helper functions, the core code is the following.

module ReflectionSolver (op unit solver : Name) where

solve-macro : Term — Term — TC Unit
solve-macro monoid hole =
do
hole’ + inferType hole » = normalise
just (varInfos , equation) < returnTC (getVarsAndEquation hole’)
where
nothing
— typeError (strErr "Something went wrong when getting the variable names in "
o termErr hole’ :: [])
{- The call to the monoid solver will be inside a lamba-expression.
adjustedMonoid < returnTC (adjustDeBruijnindex (length wvarlInfos) monoid)
just (lhs , Ths) < returnTC (toMonoidExpression adjustedMonoid (getArgs equation))
where
nothing
— typeError(
strErr "Error while trying to build ASTs for the equation
termErr equation :: [])
let solution = solverCallWithLambdas (length varInfos) varInfos adjustedMonoid lhs rhs
unify hole solution

"n ..

First of all, the module is parametrized over the names of the monoid operation op and
the unit of the monoid, as well as the naive solver we developed in the preceeding section.



These will be supplied to the actual macro by quoting the respective field accessor.
Now, when solve-macro is called, (informally and very vaguely speaking) four steps happen
in the do-block:

1)

Introduction of varInfo and equation

In the from hole’ inferred list of arguments, we isolate the variables of the equation
and group them in a list varinfo. We also isolate the equation itself. Here I will not
give the exact type of varInfo, but in the next steps we will see, that it is important
to at least remember the deBrujin-index of every variable in wvarInfo.

Introduction of adjustedMonoid

Because the call to the (naive) monoid solver will sit inside a lambda-expression, the
deBruijn-indices of the variables of monoid need to be shifted by the length of varlnfo,
yielding an adjustedMonoid. This is necessary, because the index of a variable will
correspond to the respective entry of the environment vector.

Introduction of lhs and rhs

First, we define a function buildExpression, taking a syntax tree representing the left
or right hand side of an equation and converting it into a syntax tree representing
the corresponding monoid expression. The definition is rather enlightening, so let me
state it here.

module  (monoid : Term) where

e®’ : Term
‘e®" = con (quote e®) ]

mutual

' ®_': List (Arg Term) — Term
® ‘(harg  as) =" ® "uas
® ‘(varg _nvargz:ovargy: []) =
con
(quote _® ) (varg (buildExpression z) :: varg (buildExpression y) :: [])

~®_ " = unknown

finiteNumberAsTerm : N — Term
finiteNumberAsTerm N.zero = con (quote fzero) []
finiteNumberAsTerm (N.suc n) = con (quote fsuc) (varg (finiteNumberAsTerm =) :: [])

buildExpression : Term — Term
buildExpression (var index ) = con (quote |) (varg (finiteNumberAsTerm indez) :: [])
buildExpression #Q(def n zs) =
if (n == op)
then * ® " xs
else if (n == unit)
then ‘e®’
else
unknown



Here, the names op and unit are supplied as parameters by the parent module? this
anonymous module sits in. We then take this definition and put it into a wrapper
function

toMonoidExpression : Maybe (Term x Term) — Maybe (Term x Term)

toMonoidExpression nothing = nothing
toMonoidExpression (just (lhs , rhs)) = just (buildExpression lhs , buildExpression rhs)

We use this in the macro as follows. A function (getArgs equation) takes the term
equation - maybe visualized as of the form [hs’ = rhs’, and return the pair of terms
(lhs',rhs’), to which we apply toMonoidExpression to obtain lhs and rhs.

4) Introduction of solution

Note that we are now essentially ready to connect the reflection interface with the naive
solver of the previous section. All that is missing, is a function solverCallWithLambdas
which will call the naive solver and input lhs and rhs into it.

Now that we have (informally) explained the main routine of the macro, we set

macro
solveMonoid : Term — Term — TC
solveMonoid = ReflectionSolver.solve-macro (quote MonoidStr. - )

(quote MonoidStr.€)
(quote naiveSolve)

solveCommMonoid : Term — Term — TC _

solveCommMonoid = ReflectionSolver.solve-macro (quote CommMonoidStr. - )
(quote CommMonoidStr.¢)
(quote naiveCommSolve)

where naiveSolve (resp. naiveCommSolve) is the solve function for monoids (resp. com-
mutative monoids) developed in the previous section. We can test this macro with some
examples:

module ExamplesMonoid (M : Monoid £) where
open MonoidStr (snd M)

te=c¢
_ = solveMonoid M

te-e-e=¢
_ = solveMonoid M

Vr—e-z=2
_ = solveMonoid M

i NVzyz—=(z-y-z=z-(y-2)
__ = solveMonoid M

i NVzyz—=z-(z-y) -e-z2=z-2-(y-2)
__ = solveMonoid M

2Which is the module ”ReflectionSolver” introduced at the beginning of this section, to be precise.
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3 List of Pull Requests

o Commit 587 in Cubical Agda, Grothendieck Groups of Commutative Monoids, URL:
https://github.com/agda/cubical /pull /587

e Commit 708 in Cubical Agda, Monoid Solver, URL: https://github.com/agda/cubical /pull /708
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