# Logical Topology and Axiomatic Cohesion

David Jaz Myers

Johns Hopkins University

March 12, 2019

#### Axiomatic Cohesion – A Refresher

• Lawvere proposes to continue the following dialogue:

"What is a space?"
"It is an object of a category of spaces."
"Then what is a category of spaces?"

- Lawvere's wu wei axiomatization of "space": modalities that remove all "spatial cohesion" in three different ways.
  - #: whose modal types are the codiscrete spaces.
  - b: whose modal types are the discrete spaces.
  - ▶ ∫: whose modal types are the discrete spaces (but whose action is different).

### Models of Cohesion

Some gros topoi of interest are cohesive toposes:

- Continuous Sets as in Shulman's Real Cohesion.
- Dubuc's Topos and Formal Smooth Sets as in Synthetic Differential Geometry and Schreiber's Differential Cohesion.
- Menni's Topos (similar to the big Zariski Topos) as in algebraic geometry.\*

In all of these models, there are suitably nice spaces

- continous manifolds,
- smooth manifolds,
- (suitable) schemes,

which have topologies (via open sets) on their underlying sets.

# Penon's Logical Topology

In his thesis, Penon defined a Logical Topology held by any type.

## Definition (Penon)

A subtype  $U: A \rightarrow \mathbf{Prop}$  is **logically open** if

• For all x, y : A with x in U, either  $x \neq y$  or y is in U.

Penon and Dubuc proved that in the three examples

- **Continuous Sets**: Logical opens on continuous manifolds are  $\epsilon$ -ball opens.
- **Dubuc's Topos**: Logical opens on smooth manifolds are  $\epsilon$ -ball opens.
- Zariski Topos: Logical opens on (suitable) separable schemes are Zariski opens.

# Motivating Question:

How does the logical topology on a type compare with its cohesion?

We will see two glimpses today:

- The path connected components  $\int_0 A$  (defined through cohesion) are the same as the logically connected components of A.
- A set is Leibnizian (defined through cohesion) if and only if it is de Morgan (a logical notion).

# Cohesive Type Theory Refresher

In his *Real Cohesion*, Shulman gave a type theory for axiomatic cohesion. Cohesive type theory uses two kinds of variables:

- Cohesive variables, which vary "continuously".
- Crisp variables, which vary "discontinuously".

Following Shulman, we assume the following:

## Axiom (LEM)

If  $P :: \mathbf{Prop}$  is a crisp proposition, then either P or  $\neg P$  holds.

Every discontinuous proposition is either true or false.

# Cohesive Type Theory Refresher

We will also assume that  $\int$  is given by nullifying some "basic contractible space(s)".

## Axiom (Punctual Local Contractibility)

There is a type  $\mathbb{A}$  :: **Type** such that:

- A crisp type X is discrete if and only if it is homotopical the inclusion of constants  $X \to (\mathbb{A} \to X)$  is an equivalence, and
- There is a point 0 :: A in each of these types.

We can consider a map  $\gamma : \mathbb{A} \to X$  to be a *path* in X.

- This means that  $\int A$  is the **homotopy type** (or **fundamental**  $\infty$ -**groupoid**) of A, considered as a discrete type.
- And, therefore,

$$\int_0 A :\equiv \|\int A\|_0$$

is the set of path connected components of A.

# Path components = Connected components?

So,

$$\int_0 A := \|\int A\|_0$$

is the set of path connected components of A.

• Is it also the set of *logical* connected components of A?

# The Powerset of a Type

#### **Definition**

Given a type A, its powerset  $\mathcal{P} A :\equiv A \to \mathbf{Prop}$  is the set of propositions depending on an a : A. The order on subtypes is given by:

$$P \subseteq Q :\equiv \forall a. Pa \Rightarrow Qa$$

We define the usual operations on subtypes point-wise:

$$P \cap Q :\equiv \lambda a. Pa \wedge Qa$$
  
 $P \cup Q :\equiv \lambda a. Pa \vee Qa$   
 $\neg P :\equiv \lambda a. \neg Pa$ 

# Logical Connected Components

#### **Definition**

- **1** A subtype  $U: \mathcal{P} A$  is merely inhabited if there is merely an a: A such that *Ua*.
- **2** A subtype  $U: \mathcal{P} A$  is detachable if for all a: A, Ua or  $\neg Ua$ .
- **3** A subtype  $U: \mathcal{P} A$  is logically connected if for all  $P: \mathcal{P} A$ , if  $U \subseteq P \cup \neg P$ , then  $U \subseteq P$  or  $U \subseteq \neg P$ .

#### Definition

A subtype  $U: \mathcal{P} A$  is a logical connected component if it is merely inhabited, detachable, and logically connected.

#### Lemma

If U and V are logical connected components of A, and  $U \cap V$  is non-empty, then U = V.

# $\int_0$ gives the Logical Connected Components

We let  $\int_0 A := \|\int A\|_0$ , and  $\sigma_0 : A \to \int_0 A$  be its unit.

#### Lemma

For any type A and any  $u: \int_0 A$ , the proposition  $\sigma_0^* u :\equiv \lambda a$ .  $\sigma_0 a = u$  is a logical connected component of A.

#### Proof.

- $\sigma_0^* u$  is merely inhabited because  $\sigma_0$  is merely surjective (PLC).
- Since  $\int_0 A$  is a discrete set, it has decideable equality (LEM). Therefore,  $\sigma_0^* u$  is detachable.
- If  $\sigma_0^* u \subseteq P \cup \neg P$ , then we can define  $\bar{P}: (a:A) \times \sigma_0^* u(a) \to \{0, 1\}$  by cases. But  $(a:A) \times \sigma_0^* u(a) \equiv \mathrm{fib}_{\sigma_0}(u)$  and so is  $\int_0$ -connected; therefore,  $\bar{P}$  is constant, and  $\sigma_0^* u \subseteq P$  or  $\sigma_0^* u \subseteq \neg P$ .



# $\int_0$ gives the Logical Connected Components

#### Theorem

For a type A, the map  $\sigma_0^*$  gives an equivalence between  $\int_0 A$  and the set of logical connected components of A.

# Infinitesimals and Double Negation

In his paper Infinitesimaux et Intuitionisme, Penon makes the following claims:

## Proposition (Kock)

In the big Zariski or étale topos, with  $\mathbb{A}$  the affine line,

$$\neg\neg\{0\} = \operatorname{Spec}(\mathbb{Z}[[t]]) = \{a : \mathbb{A} \mid \exists n. \, a^n = 0\}$$

is the set of nilpotent infinitesimals.

### Proposition (Penon)

In Dubuc's topos, with  $\mathbb A$  the sheaf co-represented by  $\mathcal C^\infty(\mathbb R)$ ,

$$\neg\neg\{0\}=\, \text{$\sharp$}(\,\mathcal{C}_0^\infty(\mathbb{R}))$$

is co-represented by the germs of smooth functions at 0.

## Ainsi donc l'écriture

$$\neg \neg \{0\} = \{ \text{Infinitésimaux} \}$$

est justifiée.

# Neighbors and Germs

#### **Definition**

Let A: **Type**, and let a, b: A. We say a and b are **neighbors** if they are not distinct:

$$a \approx b :\equiv \neg \neg (a = b).$$

### Proposition

The neighboring relation is reflexive, symmetric, and transitive, and is preserved by any function  $f: A \rightarrow B$ .

- For a:A,  $a\approx a$ ,
- For  $a, b : A, a \approx b$  implies  $b \approx a$ ,
- For a, b, c : A,  $a \approx b$  and  $b \approx c$  imply  $a \approx c$ ,
- For a, b : A and  $f : A \rightarrow B$ , if  $a \approx b$ , then  $f(a) \approx f(b)$ .

# Neighbors and Germs

#### **Definition**

The **neighborhood**  $\mathbb{D}_a$  of a:A is the type of all its neighbors:

$$\mathbb{D}_a :\equiv (b : A) \times a \approx b.$$

The **germ** of  $f: A \rightarrow B$  at a: A is

$$df_a: \mathbb{D}_a \to \mathbb{D}_{f(a)} \ (d, \_) \mapsto (f(d), \_)$$

### Proposition

(Chain rule) For  $f: A \rightarrow B$ ,  $g: B \rightarrow A$ , and a: A,

$$d(g \circ f)_a = dg_{f(a)} \circ df_a$$
.

## Cohesion Refresher

## Theorem (Shulman)

 $\sharp$  is lex: for any x, y : A, there is an equivalence  $(x^{\sharp} = y^{\sharp}) \simeq \sharp (x = y)$  such that the following diagram commutes.



### Lemma (Shulman)

For any  $P: \mathbf{Prop}, \sharp P = \neg \neg P$ , and a proposition is codiscrete if and only if it is not-not stable.

## Codiscretes and Infinitesimals

Putting these facts together, we get:

## Proposition

For a set A and points a, b: A,

$$a \approx b \equiv \neg \neg (a = b) \iff \sharp (a = b) \iff a^{\sharp} = b^{\sharp}$$

### Corollary

0 is the only crisp infinitesimal.

In fact, since

$$fib_{(-)^{\sharp}}(x^{\sharp}) :\equiv (y : A) \times x^{\sharp} = y^{\sharp}$$
$$\simeq (y : A) \times x \approx y \equiv : \mathbb{D}_{x}$$

we have that all formal discs  $\mathbb{D}_{\times}$  are  $\sharp$ -connected.

### Leibnizian Sets and the Leibniz Core

## Definition (Lawvere)

A set A is Leibnizian if  $\sharp \sigma: \sharp A \to \sharp \int A$  is an equivalence, where  $\sigma: A \to \int A$  is the unit.

For crisp sets, this is equivalent to the *points-to-pieces* transform  $\sigma \circ (-)_{\flat} : \flat A \to \int A$  being an equivalence.

Every piece contains exactly one crisp point.

#### **Definition**

The Leibniz core  $\mathcal{L}A$  of a crisp set A is the pullback

$$\mathcal{L} A := (a : \flat A) \times (b : A) \times a_{\flat}^{\sharp} = b^{\sharp}$$
  
 
$$\simeq (a : \flat A) \times \mathbb{D}_{a_{\flat}}$$

# A Set is Leibnizian if and only if it is de Morgan

#### **Definition**

A type A is de Morgan if for all a, b : A,

 $a \approx b$  or  $a \not\approx b$ .

#### **Theorem**

A set A is Leibnizian if and only if it is de Morgan

Compare with:

## Theorem (Shulman)

A set A is discrete if and only if it is decidable – that is,

for a, b : A, a = b or  $a \neq b$ .

# Sketching a Proof

#### Theorem

A set A is Leibnizian if and only if it is de Morgan

If A is Leibnizian, then  $\sharp \sigma_0$  is an equivalence as well. For a, b: A, either  $\sigma_0 a = \sigma_0 b$  or not; therefor,  $(a_0)^{\sharp} = (\sigma_0 b)^{\sharp}$  or not. Naturality then gives us that  $\sharp \sigma_0(a^{\sharp}) = \sharp \sigma_0(b^{\sharp})$  or not. But  $\sharp \sigma_0$  is an equivalence, so  $a^{\sharp} = b^{\sharp}$  or not.

On the other hand, if A is de Morgan we can give an inverse to  $\sharp$  by sending  $u: \sharp \int A$  to  $x^{\sharp}$  where  $\sigma x = u_{\sharp}$ . This is well defined since we can map y: fib $_{\sigma}(\sigma x)$  to  $\{0, 1\}$  according to whether or not  $y \approx x$ ; this shows that every y in the fiber of  $\sigma x$  is its neighbor, and therefore that  $v^{\sharp} = x^{\sharp}$ .

#### References

Jacques Penon. De l'infinitésimal au local (thèse de doctorat d'état). Diagrammes, \$13:1-191, 1985.

Michael Shulman. Brouwer's fixed-point theorem in real-cohesive homotopy type theory. arXiv e-prints, art. arXiv:1509.07584, Sep 2015.