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Outline

The upper naturals.

The algebra of polynomials, three ways.

Crisp things have natural number degree / dimension.
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The Logic of Space

Space-y-ness of your domains of discourse

⇐⇒

Constructiveness of the (native) logic about things in those domains
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Logical Connectivity

Definition

A proposition U : A→ Prop is logically connected if for all
P : A→ Prop, if ∀a.Ua→ Pa ∨ ¬Pa, then either ∀a.Ua→ Pa or
∀a.Ua→ ¬Pa.

Lemma

If U : A→ Prop is logically connected and f : A→ B, then its image
im(U) :≡ λb.∃a. f (a) = b ∧ Ua : B → Prop is logically connected.

Lemma

If A has decidable equality (either a = b or a 6= b), then a logically
connected U : A→ Prop has at most one element.
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Degree of a Polynomial

Suppose R is a ring. Naively, taking the degree of a polynomial
should give a map

deg : R[x ]→ N

But suppose that R is logically connected and for r : R consider the
polynomial rx .

Then deg(rx) : N, so that

λr . deg(rx) : R → N .

But R is connected and N has decidable equality, so this map must
be constant (by the lemma).

Of course, deg(x) = 1 and deg(0) = 0, so this proves 1 = 0, which is
an issue.
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Problems with the Naturals
So there’s a problem with the naturals – they are too discrete. How do we
fix this?

To solve this, we need to find another problem with the natural numbers:
one from logic.

Proposition

The law of excluded middle (LEM) is equivalent to the well-ordering
principle (WOP) for N.

Proof.

That the classical naturals satisfy WOP is routine. Let’s show that the
well-ordering of N implies LEM.

Given a proposition P : Prop, define P̄ : N→ Prop by P̄(n) :≡ P ∨ 1 ≤ n
and note that P̄(0) = P.The least number satisfying P̄ is 0 or not
depending on whether P or ¬P; since equality of naturals is decidable,
either P or ¬P.
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The Upper Naturals

In other words,

The naturals are not complete as a Prop-category.

So, let’s freely complete them! We will replace a natural number n : N by
its upper bounds λm. n ≤ m : N→ Prop.

Definition

The upper naturals N↑ are the type of upward closed propositions on the
naturals. (As a Prop-category, this is

(
PropN

)op
)

We think of an upper natural N : N↑ as a natural “defined by its
upper bounds”:

Nn holds if n is an upper bound of N.

For N, M : N↑, say N ≤ M when every upper bound of M is an upper
bound of N.
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Naturals and Upper Naturals

Definition

The upper naturals N↑ are the type of upward closed propositions on the
naturals.

Every natural n : N gives an upper natural n↑ : N↑ by the Yoneda
embedding:

n↑(m) :≡ n ≤ m.

and we define ∞↑ :≡ λ .False.

An upper natural N : N↑ is bounded if there exists an upper bound n : N
of N (that is, if ∃n.Nn).

We can take the minimum upper natural satisfying a proposition:

min : (N→ Prop)→ N↑

by
(minP)n :≡ ∃m ≤ n.Pm
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Upper Arithmetic

Definition

min : (N→ Prop)→ N↑

P 7→ λn.∃m ≤ n.Pm

Lemma

For P : N→ Prop, minP = n↑ if and only if n is the least number
satisfying P.

We can define the arithmetic operations for upper naturals by Day
convolution: (with N, M : N↑)

(N + M)n :≡ ∃a, b : N .Na ∧Mb ∧ (a + b ≤ n).

(N ·M)n :≡ ∃a, b : N .Na ∧Mb ∧ (ab ≤ n).

And one can prove the expected identities by the usual Day
convolution arguments.
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Upper Naturals in Models

In localic models, N↑ is the sheaf of upper semi-continuous functions
valued in N.

(Hartshorne (1977) Example III.12.7.2) If Y is a Noetherian scheme
and F a coherent sheaf of modules on Y , then

y 7→ dimk(y)(Fy ⊗k(y))

is an upper-semicontinuous function Y → N, and therefore a global
section of N↑ ∈ Sh(Y ).

For more on the upper naturals in a localic setting, see Section II.5 of
Blechschmidt (2017). (There they are called generalized naturals)
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Cardinality
As an example of what we can define with upper naturals that we couldn’t
with naturals, consider:

Definition

Define the (finite) cardinality of a type as

Card : Type→ N↑

X 7→ min
(
λn. ‖[n] ' X‖

)

(or, the Kuratowski cardinality by X 7→ min
(
λn.∃f : [n] � X

)
)

Proposition

We have the expected equations:

Card(X + Y ) = Card(X ) + Card(Y ).

Card(X × Y ) = Card(X ) · Card(Y ).

Card(X +U Y ) = Card(X ) + Card(Y )− Card(U).*
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Polynomials, Three Ways

To define the degree of a polynomial, we need to define the algebra of
polynomials. In the following, let R be a ring.

Definition

For a type I , the free R-algebra on I , R[xi | i : I ] is the higher inductive
type generated by

x : I → R[xi | i : I ]

struct : R-algebra structure on R[xi | i : I ]

Proposition

Let A be an R-algebra and I a type. Then evaluating at
x : I → R[xi | i : I ] gives an equivalence

(I → A) ' AlgR(R[xi | i : I ], A).
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Polynomials, Three Ways

This gives a straightforward definition of R[x ] as R[xi | i : ∗].

But it’s not immediately clear how to define the degree of a polynomial
using this definition. Let’s give another:

Definition

Define R[x ]s to be the type of eventually vanishing sequences in R. That is

R[x ]s :≡ (f : N→ R)× ∃n.∀m > n. fm = 0.

Proposition

Let A be an R-algebra. Then, evaluation at x : R[x ]s gives an equivalence

A ' AlgR(R[x ]s , A).
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The Degree of a Polynomial

Now we can define

deg : R[x ]s → N↑

deg(f )n ≡: ∀m > n. fm = 0

We can prove some basic facts about the degree:

If deg(f ) = n↑, then f =
∑n

i=0 fix
i .

deg(f + g) ≤ max{deg(f ), deg(g)}.
deg(fg) ≤ deg(f ) + deg(g).

What about deg(f ◦ g) ≤ deg(f ) · deg(g)?
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Horner Normal Form
We note that any polynomial f can be written as

f (x) = g(x) · x + f (0)

Definition

Let R[x ]h be the higher inductive type given by

const : R → R[x ]h,

(−) · x + (−) : R[x ]h × R → R[x ]h,

eq : (r : R)→ const(0) · x + const(r) = const(r),

is− set : R[x ]h is a set.

Proposition

For any R-algebra A, evaluation at const(1) · x + const(0) gives an
equivalence

A ' AlgR(R[x ]h, A).
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Induction on �����Degree Horner Normal Form

Definition

Define the composite f ◦ g of two polynomials f , g : R[x ]h by induction on
f :

If f ≡ const(r), then f ◦ g :≡ const(r).

If f ≡ h · x + const(r), then f ◦ g :≡ (h ◦ g) · g + const(r).

We check that (0 · x + r) ◦ g = r , and

We note we are mapping into a set.
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Induction on �����Degree Horner Normal Form

Proposition

For any polynomials f , g : R[x ]h, deg(f ◦ g) ≤ deg(f ) · deg(g).

Proof.

By induction on horner normal form:

deg((f (x)x + r) ◦ g) = deg((f ◦ g)(x) · g(x) + r)

= deg((f ◦ g)(x) · g(x))

≤ deg((f ◦ g)) + deg(g)

≤ deg(f ) · deg(g) + deg(g) by hypothesis

= (deg(f ) + 1↑) · deg(g)

= deg(f (x) · x + r) · deg(g)
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Slogan: Instead of inducting on degree, induct on the polynomial!
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Dimension

Definition

We define the dimension of a vector space V over a field k by

(dimV )n :≡ min(λn. ‖kn ∼= V ‖)

It is the minimum n such that V has an n-element basis

Proposition

Let f : k[x ]. Then deg(f ) = dim(k[x ]/(f )).
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Catching up on Crispness

Recall that Shulman’s cohesive homotopy type theory uses crisp
variables to keep track of discontinuous dependency. A term is crisp if
all the free variables in it are crisp.

Crisp variables must have crisp type, and only crisp terms can be
substituted for crisp variables.

So, x :: X – a crisp point of X – is a general discontinuous element of
X .

Axiom (LEM)

If P :: Prop is a crisp proposition, then either P or ¬P holds.

Discontinuously, every proposition is either true or false.
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Crisp upper naturals are extended naturals

If X is a crisp type, then [X can be thought of as the type of crisp
points of X .

Definition

The Extended Naturals N∞ is the type of monotone functions
N→ Bool.

Equivalently, it is the type of upwards-closed decidable
propositions on the naturals.

Proposition

The extended naturals embed into the upper naturals, preserving the
naturals.

The bounded extended naturals are equivalent to the naturals. Every
decidable, inhabited subset of N has a least element.
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Crisp upper naturals are extended naturals

Definition

The Extended Naturals N∞ is the type of monotone functions
N→ Bool.

Proposition (Using LEM)

[N↑ ' [N∞

And this equivalence restricts to

[{Bounded upper naturals} ' N
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The Crisp Countable Axiom of Choice

Axiom (ACN)

Suppose P :: N→ Type is a crisp countable family of types. If
f :: (n : N)→ ‖Pn‖ crisply, then ‖(n : N)→ Pn‖.

Proposition

Assuming ACN, [N∞ ' N+{∞}.
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Corollaries

Corollary

Every crisp type is either infinite or has a natural number cardinality.

Every crisp polynomial has natural number degree.

Every crisp vector space has natural number dimension.

. . .
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